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1. Some information about the particular solutions of the problem. The 

problem of motion of a heavy rigid body about a fixed point under the 

action of the force of gravity can be reduced to finding the general or 

particular solutions of the following systems of differential equations 

A ;$ = (B---c) q'+ M~(YoY~--~,Y~) 

dq 
Bs = W--A) ‘P + Mg(zo~r- ~0~3) 

c g = (A - 4 P4 + h-ig @oYz - YOYI) 

(f.1) 

6’1 +a 
-& =rya-qya, 

dys 
dt=pys-vryl, -- & -- qyl -P-f2 (1.2) 

where p, q, r are the projections of the instantaneous angular velocity 

vector of rotation on the moving coordinate axes OX, OY, 02, which are 

rigidly connected with the body and directed along the principal axes of 

the inertia ellipsoid, constructed with respect to the fixed point; A, B, 

C, are the principal moments of inertia with respect to the axes OX, OY, 

02; M is the mass of the body; g is the acceleration due to gravity; 

* The present paper is an abreviated exposition of the author’s candidate’s 

dissertation, “Certain necessary conditions for the existence of single- 

valued solutions in the problem of motion of a heavy rigid body about 

a fixed point”, defended in 1950 at the Institute of Mechanics of the 
Academy of Sciences of the U.S.S.R. Conditions are added for the 

existence of the Grioli case (1947) for which in the dissertation only 

permanent rotations were obtained. 

873 



874 A.A. Bogoiavlcnskii 

X0’ YO’ 20 are the coordinates of the center of gravity with respect to 

the moving coordinate system; yl, yz, yg, are the direction cosines of 

the vertical axis OZ1 along which the gravity force is acting. 

The general solution of the systems of equations (1.1) and (1.2) de- 

pends on six arbitrary constants, Because of the relation y12 

Y3* = 

+ Y** + 
1, the number of arbitrary constants on which the functions p, Q, 

rr Y1* Yze yg depend. will be equal to five. 

Equations (1.1) and (1.2) do not contain time t explicitly, and their 

last multiplier is equal to one [32 1. Therefore, for the reduction of 

the problem to quadratures, it is sufficient to have only four independent 

first integrals. 

Three classical algebraic first integrals are known, namely 

APYI + Bqyz + Cry3 = k (1.3) 

.(,’ + .i2’ $. y3.L =-. I”” = 1 

The first integral is the so-called energy integral, the second integral 

expresses the law of conservation of the angular momentum about the 

vertical and the third integral expresses a property of the direction 

cosines. 

A fourth algebraic first integral for arbitrary values of the coeffi- 

cients of equations (1.1) and (1.2) has not been found. Under certain 

restrictions concerning the location of the center of gravity and the 

values of A, B, C, such a fourth integral can be found. 

Up to the second half of the nineteenth century the following cases of 

integrability were found and investigated. 

1. Case of Euler and Poinsot. when x0 = y. = z. = 0 and the fourth 

algebraic first integral is 

1 ,2$ + [jy + pr” t.OlX?t 

2. Case of Lagrange and Poisson, when A = B, x0 = y. = 0. to f 0 and 

the fourth algebraic first integral is 

r const 

3. Case of complete kinetic symmetry, when A = B = C and the fourth 

algebraic first integral is 

““I’ + j,oq + z(,r cnlrst 

In 1888 appeared a remarkable investigation by Kovalevskaia [l I, in 
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which a new case of integrability was discovered and investigated. In 

this case, which bears her name, and which is realized when 

A=L?-2C, zo== 0 

(by a rotation of axes in the XY-plane we can make yo = 0) there exists 

a fourth algebraic first integral 

ic ($9 - 42) + Mgz,y,J’ + j2cpq - MgzUyz]* = co11st 

This memoir of Kovalevskaia’s stimulated a large number of investiga- 

tions referring (1) to the question of finding new particular solutions 

of the general problem, (2) to the question of finding particular solu- 

tions of the new case, and (3) to the clarifying of the geometrical 

picture and the details of motion in the cases of the known particular 

solutions. 

A number of questions connected with the geometric representation of 

the various cases of motion and with the question of finding particular 

solutions of the general problem were solved by Zhukovskii, Liapunov, 

Chaplygln, Steklov, Mlodzeevskil et al. 

Kovalevskaia raised the problem of finding all the cases when the 

general solution of the systems (1.1) and (1.2) can be expressed in terms 

of single-valued functions of t. these functions having no other singular- 

ities than poles for all finite values of t, t being a complex variable. 

These functions can be expanded in series of the form 

P -~=+ (PO t- Pll + Prl” + . . .I, y1 zzz --+ (y,,’ + :‘,‘l + ;‘2’1’ + . .) 

4 ==+3ll i 411 -I- w + . . .), yz = & (:,on + y1”t + yt”P + * .) (1 4) 

r =. + (ri, + rjt + r-l’ + . .), y.7 F & (y,,“’ + y1”t + yz”‘tZ+ . .) 

where al, n2, n3. al, a2 and a3 are positive integers. 

In order that in the general case the systems (1.1) and (1.2) be 

integrable by series of the form (1.4). which contain five arbitrary 

constants, it is necessary that the coefficients of these series satisfy 

definite conditions. One such condition gave the new case of integrability 

considered by Kovalevskaia. 

Let us quote two theorems which complete the problem of finding all 

cases for which single-valued solutions for arbitrary initial conditions 

exist (i.e. the problem of finding general solutions). 

Theorem of Kovalevskaia 12 f . In the general case, equations (1. I) 

and (1.2) do not admit single-valued solutions containing five arbitrary 
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constants and having on the whole plane of the variable t no singular 

points other than poles. The exceptional cases are: 

(1) A=B=C, (3) A = B, 20 = yo = 0 

(2) ZIJ = yo = 20 = 0 (4) A = B = 2c, -10 = 0 (1.5) 

Thcorcr of Liapunov [ 11 1. Of all the cases when the constants A, B, 

C, x0, rO and zO are real and A, B and C different from zero, the above 

cases (1.5) are the only ones when the functions p, q, r, yl, y2 and y?, 

determined by the equations (1.1) and (1.2). are single-valued for any 

initial values of these functions. 

Considering series of the form (1.4) Kovalevskaia takes for the 

constants ni and mi the following values: n. = 1, ni = 2 (i = 1, 2, 3), 

leaving unconsidered the question whether tiis system of values is unique 

or not. 

Nekrasov and Appel’rot 15.6 I, investigating the exponents ni, ni, and 

Liapunov, establishing the above theorem, pointed out a particular case, 

that of the so-called loxodromic pendulum, overlooked by Kovalevskaia. 

The method proposed by Kovalevskaia in the problem of motion of a 

rigid body was not developed further for this problem. 

No-one succeeded in determining the existence of particular solutions 

by Kovalevskaia’ s method, except in the case of the loxodromic pendulum. 

All the particular solutions rediscovered were found by a skilful use 

of the differential equations under consideration or by the investigation 

of certain particular properties of the fourth algebraic first integral. 

A general method, similar to Kovalevskaia’ s, for determining particular 

solutions, has not been found. 

Appel’rot [ 5 ] established the following theorem. In the case of three 

unequal moments of inertia there are neither general integrals nor parti- 
cular integrals of the differential equations of motion of a heavy rigid 

body, having for p, q, and r poles of order higher than one and for yl, 

y2 and y7 poles of order higher than two. If, however, A = B, y,-, = 0, 

A # C, x0 # 0. there can exist particular integrals having for p and q 

poles of order three. 

Appel’rot did not give an example of a particular solution confirming 

his theorem. 

In the present paper this theorem is confirmed for the case of 

Goriachev and Chaplygin. 

From the theorem of Liapunov it follows that besides (1.5) there can- 

not be new cases when single-valued general solutions can be found (i.e. 
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single-valued solutions for arbitrary initial values). If restrictions 
are imposed on the constant h in the energy integral, on the constant k 
in the angular momentum integral about the vertical, and on the values 

of A, B, C, x9, y. and zo, then, in particular cases, a solution of the 
problem is possible. In the general form, however, the nature of such re- 
strictions has not been investigated by anyone. 

Such a problem was not raised and did not follow from Kovalevskaia’s 
method. 

In an unpublished manuscript Chaplygin [27 1 made an attempt to obtain 
the integrable cases by a unique method. 

The present paper shows that Kovalevskaia’s method can also be applied 
to find particular cases of integrability of the equations of motion. 

Such a method permits only the necessary conditions for the existence 
of single-valued particular solutions to be found. To verify the suffi- 
ciency of the similar conditions, it is necessary to show that equations 
(1.1) and (1.2), under the derived conditions, can be integrated in terms 
of single-valued functions of time. or that a fourth algebraic integral, 
besides the generally known integrals (1.31, can be found. 

Chaplygin [ 19 I showed that “the problem considered does not admit a 
particular linear integral in cases other than those so far known”. 

Since Kovalevskaia’s investigation, so far as we know, only the follow- 
ing basic cases of integrability and particular solutions of the systems 
(1.1) and (1.2) have been found and studied. We leave out of account the 
particular cases of the already known solutions and the various additions 
and modifications of the conditions themselves as well as of the parti- 
cular solutions obtained (such as, for example, the particular cases of 
the Kovalevskaia integral. motions similar to the pendulum and other very 
simple motions). 

1. Loxodromic pendulum. This case was found by Hess [3 I in 1890 and 
rediscovered in I892 by Nekrasov [ 6 1 and Appel’ rot [ 5 1. Further, it was 
investigated by Nekrasov [ 7‘8.15 1, Mlodzeevskii t 9 I , Zhukovskii f 4,21 1, 
Chsplygin [14 1 et at. In this case under the conditions 

Yo = 0, A(B-c)X,~--c(A-B)20~=0 

a fourth particular first integral exists in the algebraic form 

Arop + Cz,r = 0 

2. Case of Bobylcv and Stcklov (1893). This case was found simultaeoua- 
1~ by Bobylev [ 17 1 and Steklov [ 18 1. Under the conditions 

2A I-C, r. = y. = 0, q = 0, 
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a fourth particular integral r = r0 exists (Bobylev) or, under the condi- 

tions 2A = B, x0 = so = 0, r = 0, there exists the particular integral 

p = ~9 (Steklov). 

3. Constant (permanent) rotations. This case was discovered in 1894 

by Mlodzeevskii and Staude. The investigations of Mlodzeevskii [ 13 ] 

concerning this problem were already completed when the paper by Staude 

[ I2 1 appeared, in which one case referring to permanent rotations, 

namely when the axis of rotation is vertical, was examined. Mlodzeevskii 

stated the problem in a broader form. 

4. Second case of Steklov (1899) [ 20 1. Under the conditions B > A > 

2c, yo = Z0 = 0 there exist particular joint solutions 

‘iz = (C - .Ll) (B - -‘I) (C-~A)(B---_-l) 
Q (2C _ _,l) pq* ?3 = Q (2/j _ il) p’ 

Here, and in what follows, we have denoted Q = MgxG. 

In the present paper it is shown that in this case we shall have 

k = 0, 
Q (/I’ - 211B - LlC + 2BC) 

iz= 
(.,l - n) (c: - A) 

The solution contains a single arbitrary constant t9. 

5. Case of Goriochev and Chaplygin (1899). This case was discovered 

by Goriachev [ 23 1 , who gave a solution which contains three arbitrary 

constants, and by Chaplygin [ 24 1 , who obtained a solution containing 

four arbitrary constants. The Goriachev solution is a special case of 

that of Chaplygin. Sretenskii 131 1 investigated the motions which arise 

when the body is rotating with a very large velocity about the principal 

axis of inertia through the center of gravity. His method was later used 

by Arkhangel’skii [ 34 1. 

In this case under the conditions 

rf = B = 47, yo =: so = 0, 

a fourth particular algebraic first integral 

r (P2 + q’) + $ PY3 = 

exists, where 1 is an arbitrary constant. 

k=O 

I 

6. Second case of Goriachev’ (1899) [ 22 I. Under the conditions 

AC = 8 (A - 2B) (B - C), ?jO = zo = 0 

l It is more convenient to call this case his second, though Goriachev 

gave the preceding one in November, while this one was in August. 
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particular joint integrals 

2Qy2 = (4B - 3A) pq, 

exist. where 

QYS = 0 + tLP2) P’ 

A = (3A - 4B) ‘2B& C) (2B - 3C) , t.r = ~4 (3A - ;;;W;;T;5C - 4B) 

In the present paper it is shown that in this case we shall have 

k = 0, 
44 (‘4 - 2B) (9A2 - 56AB + 64B7! 

k= (3A - 4B) (15AZ - 64AB + 64B”) 

The solution contains a single arbitrary constant tO. 

7. Second cast of Chaplygin (1904) [26 1. Under the conditions 

0.6 > ; > 0.5965, 1.5 < ; < 1.5965, y0 = z0 = 0 

or under the following restrict’ions for the principal central moments of 

inertia L, M and N. namely 

hf>L>N, 
hf - N 

0.9 < - L <I 

particular algebraic integrals 

4 4 -- -- 

Q~z=((a+Ap 3)pq, Qrs-(?$tLP 3)Pr 
exist, where 

a= 
(B- A)(C-A) 

2C-A ’ 
p = (B-A)(C-A) 

28-A 

x=C(3A-2B) 
ZC-A ‘a 

B (3A - 2C) 
p= 2B_A s 

and s is determined by the condition 

AS (2B + 2c - 3A) s3 = 
4(2B-A)2(2C-A)sQ2 

- 9 (3A _ 28) (3.4 _ 2C) 

The solution contains a single arbitrary constant to. 

8. Case of Kovalevski (1907) [28 I. Under the conditions 

A = 18BP--CC) 
9B - IOC or AC = 9 (A - 2B) (B - C), yy, = z. = 0 

particular algebraic integrals 

q2 = p3 (I’), r? = I)? (p), y, == II3 (p) 

exist. where PO(p) is a polynomial of degree s with respect to p, 
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(2C-33B)(81B2-156BC+FW) 2u 
a2 = BC(9B- IOC) 3 P”“-c&_~~~ 

and p1 a1’ and ~9’ are determined by a system of algebraic equations 
with coefficients depending on A, B and C. There is no need to write 
these equations down. The solution of the problem contains a single 
arbitrary constant to. 

9. Case of Grioli 11947) [30 1. This case represents regular precession 
about a nonvertical axis. Under the conditions 

y* = 0, (B - C) zE*2 - (R - B) zO? = 0 

joint particular integrals 

p2 + q2 + r2 = const, zOp f zor = const 

exist. 

In all these particular cases the restrictions imposed on the values 
of h, k, A, B, C, zO, yO and z. are obtained by various methods, without 
applying Kovalevskaia’s method. 

The purpose of the present paper is not the study and analysis (al of 
the various modifications and additions of the basic particular cases of 
integrability obtained or (b) of the various geometric and analytic 
methods applied to the above problem. Nor is the problem of the stability 
of motion considered. In this connection. no analysis of the literature 
on the motion of a heavy rigid body about a fixed point, which is not 
directly related to the problems considered in the present paper, is 
given. 

2. On the differential equations of the problem containing 
the arbitrary constants of the classical first integrals. Lrtt 
us represent the equations of motion of a heavy rigid body about a fixed 
point in a form different from (1.1) and (1.2), namely in the form indi- 

cated in the paper by Hess E 3 1 . Let a quadratic form and IZ - 1 linear 

forms with respect to the variables xi' ..*, xn with coefficients aI I 

***I =,, Y1, I) l . , y, be given in the form 

512 + x22 +x32 + * . . +x,2 = 1 

a91 + a2x2 + a3x3 + (I . . + a,2, = a (2.1) 

. . . . . . . . . . . . . . . . . . . . 

r1s1 + 72x2 + 73x3 + * + ’ + y?lGl = T 

Denote 
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Xl x2 . . . xn 

w= al a2. . -an 
. * . . . . . 
71 72 * * *m 

where 

(aa) = a: + . . . + 4, (ap) = a& + . . . + OLnfL 
. . . . . . . . . . . . . . . . . . . . . . . . . . 

Differentiating H with respect to ni and taking into account (2.1) we 

obtain 

aH f3H t?H 
2-g-Xi+,ai+q~i+.-. +;5=2w?g (i =i, . . . ) n) (2.2) 

1 

‘lhe minors of the determinant R, corresponding to the elements xi, are 

Ri = a W/dXi. Therefore, we have the following identities: 

Multiplying equations (2.2) by zi and adding, then by ai and adding, 

and SO on, we obtain the equations 

2a;1 +ga+... ++2W2=2H 

25x+~(E@.)+...+5+0 

2%j9+g(pa)+... +g@r)=O 

(2.3) 

. . . . . . ..*............ 

Denote the minors of the determinant H, corresponding to the elements 

of the first row, by the same letter with a subscript, and the minors, 

corresponding to the elements of the first calm, in addition, by a prime 

above. Expanding H according to the elements of the first row and the 

first colurm, we obtain 

H = HII + H,a +... +H,r, H = HII+ HPr'a + . . . + Hy'r (2.4) 

Because of the syuvuetry of the determinant H with respect to the 

diagonal we have Ha = Ha', . . . , H = H '. Adding term-by-term the equal- 

ities (2.4) and comparing them wi[h (2)13), we obtain* 

i3H 
Hl, -aH&‘H l3H 

al= aa a, . - *, - = 2H; 
a-Y 

l Coebescure, Sur quelques syst6mes particuliers d’6quations diffgren- 
tielles. J. Rcinc Angcw. Math. Vol. 80, pp. 33-51 (1875). 
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Due to (2.2) the vari,ables xi (i = 1, 2, . . . . n) can be expressed 

explicitly in terms of the forms (2.1) and their coefficients in the 

following form 

fllxi = 1/H Wi - H,ai - Hp,pi - e e . - Hyri (2.5) 

With reference to a heavy rigid body rotating about a fixed point, 

four vectors, intersecting at the point of support, can be determined at 

any instant t: the unit vector zIo along the fixed axis coinciding with 

the line of action of the gravity force, the vector of the principal 

kinetic momentum G, the vector of the instantaneous rotation and the unit 

vector no of the position vector of the center of gravity. 

‘lhe scalar products of these vectors are 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9 , . 

10. 

Y = (GG) = A?p? + Pq2 + C2r2 

p = (Gno) = 4 (A SOP + Q/or! + Czar) ” 
‘I: = (Gw) = Ap2 + Ii’@ + Cr2 

5 = (ton”) = $ (xop -t yoq + zor) 

0 = iw”) = ml+ 972 + q3 

w = (coo)= p2 + q2 + r2 

I, = (z1”z1y = 712 + 7*2 + 732 = 1 

12 = (Gz,~) = Apy, + Logy, + Cry, 

11. = (n”zrn) = $ (rorl + ~~7~ + ~“7~) 

12”’ = (non”) = &: (xo2 + yo2 + zo2) = 1 

(2.6) 

Ihe quantities Z,, k and no are constants while the quantity 7, which 

represents twice the kinetic energy, is connected with ~1 in the following 

way : 

(h = const) (2.i) 

In this way six new variables can be introduced. For our purpose take 

three of them, namely V, p and ~1. Instead of p also 7 can be taken. 

The total derivatives of these quantities with respect to time, taking 

into account the Euler and Poisson equations (1.1) and (1.2), are 

dv 
71 72 73 

-$- = -i- 
x0 Yo rzo 

-_= 
dt 

2Mg Ap Bq C‘r , 
0 

A p Jlq Cr 

50 Yo 20 , p q r @f3) 

de- 
x0 Yo 20 

dt = -& Tl 72 7s 

.P Q r 
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and 9th product from (2.6) for the forms of the Taking the ?th, 8th 

type (2.11, we obtain, in confo-&ty with (2.5), 

Here 

N Orl = If ZW,, - HkAp - H, % 

H,r, = I/HW,, - HkBq - H, + 
0 

H,r, = ).f~Wyl - H&r - Ii, g 

H=We= Ic v p , W = p = & .$ 2; c’,” 

P Q 1 zo Yo zo 

!f, = V - Q2, WY, = .+. (&zo - CFYo) 

Hk = py.-- k, W y* = -& (Crzo - APO) 

H G = kp - VP, W*a = -j$ (Apyo - moo) 

(2.9) 

'Ihen from (2.8) and (2.91, taking into account (2.61, we obtain the 

following basic system of differential equations in the Hess form: 

( Y - p2) -d”;” = (7 - "Q) -& $w + (k - pip) _f!! (2.10) 

The solution of the Hess equations gives the solution of the Buler 

equations, except in the cases when from the expressions (2.6) for v, p, 
p and (2.7) the quantities p+ q and r cannot be obtained. 

In 1903 Schiff [ 25 1 proposed a modification of the equations (1.1) 

and (1.21, reducing them to a new form similar to that already considered, 

taking for the new variables the expressions* 

& (A$ + -W + Cr2) 

1 
- (A”$ + B2q* + Pr”) 
2 (Mg)” 

n:, (A5oP + %hq + CZO’) 

l Schiff takes the last expression with the + sign, since he transforms 

the Buler equations, written down for the case when the OZ1-axis is 

directed in the direction opposite to that of the force of gravity. 
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Assuming that the last tno expressions can be constant. and giving 
various initial conditions, under these conditions Whiff unified several 
particular cases (already known). He did not consider whether the para- 
meters and the initial conditions of the problem can be selected in such 

a way that these cases can be actually realized. 

3. Cases of integrability, when radicals in the right-hand 
sides of the differential equations of the departure are 
absent. The basic differential equations are given in such a farm that 
besides the considered variables Y, p, T, two of which enter, in addition, 

in the form of derivatives, their right-hand sides contain the quantities 

r and W, which are expressed explicitly only in terms of the old var- 

iables. 

From equalities (2.6) the following abvious relations follow: 

7 - rlw = (3 -- .I> (I” + (C - d)r2 

~-3Bw=1;1-_13)p’+(C-BB)r2 

c- L’w =(_L-c)y’-+(&--c)q* 

3?& - ,k) = (B - _l)?Joq-/- (C - L4) u"gY 

Ko(p- B3) = (A 43)X@-+ (C- B)z,r 

R&l-C3) = (A-cC)x,y+ p--C)y,q 

(3. I) 

Let us express the quantities CJ, ID in terms of the variables V, p and 

For this purpose eliminate twice in pairs from the first three rela- 

tions af (2.6) any two variables (for example, p, p and r, 9). After 

elimination, find the roots of the two algebraic pofynomials in one of 

the two old variables fr and p), and substitute them into the correspond- 

ing last six relat;ions of 13&l). 

Substituting the expression for p obtained from the second relation 

of (2.6) into the first and third, we obtain two quadratic equations with 

respect to q with coefficients depending on r, v, p and 7. Eliminating 

q from these equations, i.e. putting the resultant equal to zero, we ob- 

tain 

{C [A fB - C) 503 -+- B (A - C) go2 f c (3 - A) Zo21 P” - 2c (3 - A) R,z,pr + 

+ (B - A) R&P f Ax,~ (v - BT) + By02 (v - 24~))~ - 

- 4B(B-A)y,2(Czor- X(#IC(if -C) 7-2 + Y - aTI = 0 (3*2) 
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In exactly the same way, substituting the expression for r obtained 

from the second of the relations (2.6) into the first and third relation, 

and eliminating q from the two quadratic equations so obtained, we get 

{A[A(B-C)22,- B(A-C)y,~+C(B-~)2,2]p2-2A(B-C)Rozopp+ 

+ (B - C)R@ + By,2(v -CT) + C@(Y - BT))2 + 

+4B(B-c)y,2(ALr,p-~K,p)~[A(A-c)p~-v+cCr]=0 (3.3) 

If the roots of the polynomials (3.2) and (3.3) are substituted into 

the fifth and eighth relation of (3.1), then explicit expressions of 0 

and w in terms of v, p and r are obtained. 

In general, such a transformation has a cumbersome form and requires 

particular consideration. We will introduce the following notations: 

P=(A-B)(H-C)(C-A) 

h=(B-C)2,2-(A-B)zo2 

u = A(B- C)X,? + C(A -B)2,2 

V = A(B - C)X,2--C(A - B)2,2 

'lhen, equations (3.2) and (3.3) b ecome quadratic and have simple 

expressions or the roots under the assmption that y0 = 0. 

For this case, and under the assumptions that Vf 0 and that in the 

expressions for the roots of the polynomials (3.2) and (3.3) the radicals 

are taken with + signs, the expressions for u and w in terms of v, p and 

r are obtained in the form 

(3.4) 

-(/&%Ro~ = l/rii&lR,,p & (A - C) .-q,q, 1/(/l - B) (B - C) R,$ - V (v - BT) 

ARCV2w = ACV”r - PURo2p2 - [A? (H - C) x0? - C2 (A - I?) q,?] V (v - Rs)_t 
- 

* 2 1/ACPR,z,z,p 1/(-A - B)(U - C)R,?p? - lT (Y -BY) (3.5) 

If V= 0, then the following expressions are obtained for u and w in 

tens of the variables V, p and 7, assuming that p f 0 and Y f Br : 

11 + c 
fS-.mp- 

(A - C) zo? (v - Pr) 
2:1 (U - C) h’,,‘p 

(3.6) 

&. = (J- fi) &J? (4&Z __ q+ CC 
A (:1 - C).zQ - 

c (3.7) 

:I - B (A - C) Ho” 2 (A + C) z,? 
=/Inzx,” C 

$. - u _ c 

Substituting the expressions obtained for u and w into equations 
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(2.101, we obtain three basic differential equations for the three 

variables V, p and T , the independent variable t being not explicitly 
contained in these equations. 

Let us remark that the general solutions and certain particular solu- 

tions of the problem exist, either when the radical is absent in the 

right-hand sides of the basic differential equations (2.101, i.e. in the 

functions which give u and w in terms of v, p and r , or when the indicated 

functions themselves become constant. 

‘Ihis is possible if one or several conditions are satisfied (the con- 

dition yO = 0, introduced earlier, of course, remains to be satisfied): 

1. Either V = 0, 

or for V#O: 
2. x0 = 0. 3. z,,=O. 4. A=C. 5. B=C. 6. A=B (X.8) 

7. (A - B)(B - C)R,2p" - V(Y - BY) = const 
3. 3 = so (con&), w = wO (const) 

The second and third conditions of (3.8) taken together contain the 

case of Euler and Poinsot. Here the indefinite case must still be invest- 

igated. The second and sixth conditions together give the case of 

Lagrange and Poisson. The fourth, fifth and sixth conditions together 

give the case of complete kinetic symmetry. ‘Ihe third and sixth conditions 

taken together lead, in what follows, to the case of Kovalevskaia. 

Consider the derivation of the particular cases of integrability of 

the equations. If necessary we shall pass to the old variables, in which 

the known cases of integrability have been considered. 

If the first condition of (3.8) is satisfied, then u and w are given 

in terms of V, p and r by the formulas (3.6) and (3.7). ‘Ihese formulas 

are obtained by elimination of p and r from the formulas (3.21, (3.3) 

and the fifth or the eighth relation of (3.11, under the assumption that 

pf OandwfBr. 

For yO = 0, v = 0, equations (3.2) and (3.3) are satisfied for arbit- 

rary p and r, if the new variables are related by the relations p = 0, 

v = B7. &e of them can be taken as a particular integral, for example, 

p = 0. We then obtain the case of the loxodromic pendulum. 

This case was obtained by Hess [ 3 I, and later, using Kovalevskaia’s 

method by Appel’ rot [ 5 1 and Nekrasov [ 6 1. 

In a number of papers Nekrasov [ 6,7,8,15 1 analytically investigated 

the motion. 

The peculiarity of this case consists in the fact that the solution 
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of the problem reduces itself, in general, not to single-valued functions 

of time but to many-valued ones, and only under certain supplementary 

conditions can the solution be reduced to single-valued functions of time. 

The conditions for the existenceof asymptotic periodic motions in this 

probl&m were considered by Mlodzeevskii and Nekrasov [9 1. 

Zhukovskii [4 I, with his innate skill, gave a geometrical solution of 

the above pendulum. 

Chaplygin [ 14 I indicated the disposition of the points of support in 

the rigid body for the motion to be realized. 

Consider the third and seventh condition of (3.8) which assume the 

form 

(B-C)X,~[(A YB)p2 - A(v- Bs)] = const (3.9) 

or in the old variables A C(B - C)xo2r2 = const. For the particular value 

zero of the constant when B = C, we obtain the case of Lagrange and 
Poisson. If x0 = 0, we have the case of EXer and Poinsot. Excluding these 

cases, we obtain that the above condition is equivalent to r = 0. 

Here the new variables in terms of the old variables are expressed as 

follows: 

v = A2p2 $ B2q2, p = Ap, 2=Ap2+Bq2 (3.10) 

a = p, w = p” + 42, f” = 71 

The second differential equation of (3.10), written in the fan 

($j” = (w - 9) (v - p?) - (7 - ps)” 

and taking into account the relation (3.101, gives p = p,, (const). 

The third differential equation of ( 2.10) is satisfied as a consequence 

of the relation (3.101, the condition p = pO, the equality (2.7) and the 

second of the equalities (3.1). 

'Ihe first differential equation assumes the form 

(3.11) 

where v and p, owing to the relations (3.10) and (2.7), are connected by 
the relation 

For the conditions introduced, y0 = z. = r = 0, p = pa/A = const, the 

third equation of Fouler gives 
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(A--B)Porl+QTz= 0 
‘Ihe first two integrals of (1.3) reduce to 

T-2Qp= h, (-l--$y$L_)+Por=k (3.12) 

For the variables r, p not to be constants, it is necessary for the 

determinant of the system to be equal to zero, from which there follows 

the relation 

A = 2B 

From the system of equations (3.12) we obtain the following relation 

between h and k : 

?$‘($:__h) = Qk (3.13) 

bations (2.7), (3.10) and (3.13) give 

v-o IO 2=BQ(2p-$-) 

Differentiating the second equality of (3.1) with respect to t, re- 

placing p, q by their values, taking into account (2.7), (3.13) and sub- 

stituting the expressions for v - pO*, &/dt into (3. ll), we obtain the 

differential equation for the case of Bobylev and Steklov, namely 

(- > dt_L_ 2 
dt 

Of the two constants h and k in the integrals 

tains only the constant k [h can be expressed in 

(3.13)1. 

(3.14) 

(1.3) the solution con- 

terms of k by means of 

In order to reduce the equation obtained to the form considered by 

Ebbylev , let us make a cyclic permutation of the variables and parameters, 

replacing p by F, q by p, r by q and the remaining quantities correspond- 

ingly. ‘lhe problem is subject to restrictions which can be put in the 

form 

2A = C, 50 = y, = q = 0, 7. = F,, 

In addition we have p0 = Cr, p = y?. Hence equation (3.14) assumes 
the form 

2 _ 2fifc,, 1: 
k 

__ 
A 

r3 
Cr, 

Y3 - C’ro (3.15) 

The constants C2 and k, introduced by F?obylev 117 1 have the expressions 

c, = - -& ) 
0 

kc == -$ _ 
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Equation (3.14) can be reduced to the form indicated by Steklov I 18 I 

if A, x0, p and y1 are replaced by B, yO, q and yz, and the expressions 
- 

PO:" - k =zz 

are calculated from the second integral of (1.3) by use of the third 

Euler equation. 

Then equation (3.141 assumes the form 

‘Ihe constants 1, n and K introduced by Steklov have the expressions 

Consider the seventh and eighth conditions 

terms of the old variables has the form 

[(A - B) z,p + (B - C) zor]2 = La 

Formula (3.4) will be written in the form 

V&z = AR,,? + (tl - C) 

of (3.8). The former in 

G = const) (3.17) 

G,,Z(& 

Fqalities (3.17) and u = a0 = const lead to the condition A = 0, 

under the assumption that p and r are not constants. 

Formula (3.5) will be written in the form 

BV2w = 7% -- RV (Y - BT) -t_ 2PRoxoz,Lp + (/I - C) UI? 

lhe constants uO, wg and L can be selected in such a way that this 

equality is identically satisfied. 

The conditions 

lJO = 0, n == (U - C) X0* --- (A - U) z,,? :r 0 (3.18) 

and s,p + zOr =: const, p2 + y2 +- r2 I-= cons1 (3.19) 

taken together give the case of Grioli, i.e. a regular precession about 
a nonvertical axis. 

The meaning of the condition h = 0 is the following. Assuming that 
A > R > C and that the conditions (3.18) are satisfied, the center of 

gravity of a heavy rigid body rotating about a fixed point must lie on 

one of the two perpendiculars to the circular sections of the ellipsoid 
of inertia constructed with respect to the point of support. In order to 

prove this, let us construct the central gyration ellipsoid at the center 
of gravity 0 and referred to the principal directions, namely 
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(3.20) 

where al, b, and cz denote the radii of inertia with respect to the 

principal central axes. 

For the point S, the coordinates of which with respect to these axes 

are {, 7, 5, let the conditions (3.18) be satisfied, where A = Ma’, 

B = Mb’, C = MC* are the moments of inertia of the body with respect to 

the principal axes of inertia Sxyz, intersecting at the point S. Here 
x0, y0 and z. are the coordinates of the center of gravity 0 with respect 

to the system with the origin at the point S. 

In order that the condition y0 = 0 be satisfied, the principal plane 

=Q, orthogonal to the middle axis of the gyration ellipsoid at the point 

S 

must contain the center of gravity 0. In addition, this plane must be 

tangent to the one-sheeted hyperboloid, confocal with the ellipsoid (3.201, 
passing through the point S and belonging to the system of confocal sur- 
f aces 

where 
i., r= $--a2, h, = ~12 -- b2, j,;, = i;? ~2 

are the elliptic coordinates of the point S provided 

holds. 

In general, in the coordinate system Otq 4, the coordinates of the 

center of gravity OfO, 0, 0) do not satisfy the equation of the tangent 
plane to the one-sheeted hyperboloid. This requirement can be met only 

if the hyperboloid of one sheet degenerates into the outer part of the 

focal hyperbola 

i.e. it is necessary that 7 = 0. Thus, the point S lies in the coordinate 
plane (05, the point 0 in the plane z2%, i.e. the axis Sy is parallel to 

the axis 0~. 

From the expression of the Cartesian coordinates of the point S in 
terms of the elliptic coordinates it follows that n2 = cl2 + b,’ + cl2 + 
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+ A, + A, + A,. Hence for A, = - b 

A 

2, the expressions for the squares of 

the principal radii of inertia at are 

(12 _= ul* $ Cl2 + 1, 

6” == a12 + cr2 + 1.r - h, + h, (3.21) 

c’ = cI1? + era + 1‘1 

Equating the moments of inertia with respect to the straight line 

connecting the center of gravity of the body with the pole S, expressed 

in terms of the radii of inertia with respect to the principal central 
axes and the principal axes, intersecting at the point S, we obtain in 

conformity with (3.21) 

[lI?T_? -+ Cl”7 2 = 
% - @IT,2 + k+z”f (3.22) 

Here the gl’s with subscripts denote the direction cosines of the 

straight line connecting the center of gravity and the pole S with respect 

to the corresponding axes, assuming that a straight line emanates from 

the origin of the coordinate system. Eliminating sI2 and c12 from the 
equalities (3.21), we obtain 

u2 = 2t2 - h, +L& c” =L &J + h, - k3 

The condition (B - Cfx02 - (A - B)t,’ = 0 in this connection gives 

Comparison of the equality obtained with that of (3.22) gives 

b12 = a12ycz + c12y,ez 

The right-hand side of the equality represents the radius of inertia 

with respect to the straight line in the plane tO< passing through the 

center of gravity and being perpendicular to the straight line connecting 
the center of gravity with the pole S. lhus, the locus of points of 

support S of a heavy rigid body which satisfy the conditions (3.18) is 

(1) a pair of perpendiculars to the planes of the circular projections 
of the central gyration ellipsoid, if by the latter planes we understand 

the planes on which the orthogonal projection of the central gyration 

ellipsoid is a circle, or (2) a pair of perpendiculars to the planes of 
the circular sections of the central ellipsoid of inertia. 

From the way of constructing the gyration ellipsoid from the ellipsoid 

of inertia, it follows that in the case when the transformation radius is 
equal to one, the planes of the circular projections of the central gyra- 
tion ellipsoid are at the same time the planes of the circular sections 
of the central ellipsoid of inertia. 
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Because of the reciprocity of the above mentioned ellipsoids this pro- 

perty is also reciprocal with respect to them. 

Substituting the expression X, = h,$Z2 + X,+z2 into the second equal- 

ity of (3.21) and taking into account the remaining two equalities, we 

obtain 

b? = &Lz% + $TX" 

Thus, the disposition of the center of gravity with respect to the 

point of support is shown. 

The center of gravity of a heavy rigid body, rotating about a fixed 

point and subject to the conditions (3.18), must lie on one of the two 

perpendiculars to the circular sections of the ellipsoid of inertia, con- 

structed at the point of support. 

Guliaev [33 I was concerned with the problem of expressing p, q, r, 

y , y and y7 as explicit functions of time t for the case (3.18) and 

(k191. 

Consider the particular case when the first constant in (3.19) is 

equal to zero, i.e. the conditions 

zJo == 0, (Ii - C),()L - (II- li)z:,2 z 0 (3.23) 

s,p+z,r=o, p? + 4" + r3 --: const 

Differentiating the first expression in the second row of (3.23) with 

respect to time and taking into account the Fuler equations (1.1) and the 

relations of the first row in (3.23), w obtain 

_4x,p + C&r = - :l(,oH,2-~ (HO? = x0'? + zO?) 
provided A # C. 

Solving this equation jointly with the iirst equation from the second 

row of (3.23), we obtain 

After the substitution into the first and third Eulerian equation of 

(1.1) and taking into account (3.23), we obtain 

M,oR,,'-f~ 

r = (A - C) Z”fJ 

r = - .I- (1 = const) 
20 

(3.24) 

The second equation of Euler (1.1) and the second equation of Poisson 

fl.2), after elimination of dy2/dt, p and r, give an equation which, 

owing to the first equality of (3.23), can be written in the form 

(3.25) 
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Differentiating this equality with respect to time and substituting 

for tQl/dt, dy3/dt their expressions as given by the first and third 

equation of Poisson (l-2), eliminating p, q and r from them before the 

substitution by means of (3.24), and assuming that q f 0, we 

Excluding the case A = C= 2B, we obtain from (3.25) and 
expressions 

(A - C) 1” 

Tic=: - hlgx,K,” ’ 
rs = p - C) l2 

Mgz&,2 

After eliminating 1, we obtain 

511f zors = 6 

obtain 

(3.26) 

(3.26) the 

(3.27) 

(3.28) 

The second equation of Poisson (1.2), owing to the expression obtained 

and (3.241, gives y2 = const, q = const. 

Mlodzeevskii [13 I investigated cases when a heavy rigid body, fixed 

at a point, rotates about a constant (permanent) axis. One such case of 

motion is when the permanent axis of rotation is vertical and located in 

the body on a cone of the second order with the vertex at the point of 

support. This cone under the first condition of (3.23) degenerates into 

a pair of planes 

(:I - C) x,,z* 

H”” (%I71 i- z0-h) 72 == 0 

The expression (3.28) shows that the motion considered refers to a 

particular kind of permanent rotations (in the case of Grioli), 

The first two classical integrals (1.3) assume the following form 

The constants h and k are connected by the relation 

Then from (3.24) and (3.27) the following relations are obtained 

The third classical integral of (1.1) due to (3.23) and (3.29) gives 
h" 

q” = -/$ - 
k" (MgR,,fZ 

h’(A -B)(B-cc) 

The expressions for p, and r on the basis of the second equality of 

(3.30) are as follows: 
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‘Ihe angular velocity in terms of h and k is given by the expression: 

4. Certain necessary restrictions for particular cases of 
integrabifity. Consider the third condition of (3.8) for Vf 0, i.e. 

y* = z. = 0, ro = R,. 

The center of gravity of the body lies on the principal axis of 

inertia, the moment of inertia with respect to which is equal to A. 

Here the basic differential equations (2.10) can be written in the 

form 

jdv 2 t-1 =r-v 

AW$, 

CT- N2 + 44 rQ (v - +9 + kp (T - h) - Qk21 

= - AV + A&p2 + A2BIvz + p’p” + AN~“T - A2BC? 

(p’ - AT) 2 + A [p (r - h) - 2Qk] $_+ Afv - p2)g = 0 (4.1) 

where 

B r=B+C, J=2A-B-C, N=2BC--AAB-At’: 

P’=(A-@(C-A), Q=.Mgq, 

Let us apply Kovalevskaia's method to the system of differential equa- 
tions obtained. 

Assume that formally this system can he satisfied by series of the 

form 

Y = $ (Yg -t v1t + v&-. _ .) 

p=~~*-(pc+p~t+p,12+...) 

‘: = -j-& (To + 7,t + ‘C2t”-+-. . .) 

(4.2) 

where ni, n2 and n3 are positive integers, some of which might be equal 

to zero, and vO, p0 and r. are all different from zero. 

For the series (4.3) to represent a particular solution of the system 
(4.1), they must converge in a certain domain of the variable t. If the 

particular solution contains at least one essential arbitrary constant 

(besides the arbitrary constant to, assigned to t, and the arbitrary 

constants h and K), then the series (4.2) will contain at least one 
essential arbitrary constant among their coefficients. 
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Consider certain cases for the system of values nl, n2 and n3 when the 

series (4.2) satisfy the system of differential equations (4.1). 

Assume that nl = n3 = 2, n 

P 

= 1 (A f B, A f C) and substitute the 
series (4.2) into the system 4.1). 

Equating the coefficients of equal powers of t on the left- and right- 
hand sides of the equations, we obtain the following systems of algebraic 

equations for the determination of the coefficients of the series (4.2): 

1. 4v, + To2 = 0 (4.3) 

rlv, (90 - Av,) - PO2 (P’p,2 -+ ANTo - A2BC) + A2BCr,2 = 0 

2v, - AT, = 0 
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6* y5 c-- 12% + %?) -I- 2 f%%%J - y4 (2% - “A) + ‘4 (To + T1Y*)] + 

+?I 12 f%- IL) Toof Q21 + 2 f’C;s [%%f (Tz- h) vo+ VlTIJ + Yp (T*-h.)s,- 

-2Qk?,~o) + (“cr- hh - 4Q Ik (v- h) po+ Qtl + Pl (k- x&o)1 :=o 

“h&o - 2p, (Cu,’ + WBC) pu - A.r6Yo + kc,@, - 2p,(D - A$@‘“, -j- 

f AF&, - 2p8 [ Afv,po + pZ (fDO - 2A2BC) + ANc2Po + p1@,,] - 

- &Yz - ZAJv,P,p, - P2* (ml + GP’P,po) - 2ANp,z,pl - 4P’P,P,3 = t) 

V6 (3P02 - 5ATo) - ps (4-4, - 7A~o) PO + AT, (5*+ - 4~07 + 

+ v4 (4P,Po - 3Ad - p4 12~1~0 + p1(4~0 - 7.4~0) - 4&po] + 

+A74 (3~1 - 5p,pof + ~3 (2~0 - AT, -t- p12) - 

- ~3 fpz @*to - TAT,) - A (rB -- fi) PO + 2v,pl - 4Ap,:,] + 

+ AT, (~2 - 2p,po - p12) - p$ (Ye - EAT,) + ApZ [(T, - h) p3 -- 2Qk] z o 
. . . . . . * . . . . * . . . . . . * . . * _ _ * ~ . . . . 

Here for brevity we have set 

'Ihe first system of (4.3) has for vO and rO the solution 

Yg = -/I*, 'to= -22A 

The quantity pO is determined by the equation 

(A - U) (A - C)pO" -+ A" [(‘I ~- 11) (A --~ C) + (A --- 2Lz)(il - 2C)J pu" + 

+n4(A-2B)(n-2zc)=o (4.4) 

From the first equation of the second system it follows that r1 = 0. 

The second and third equations, which are homogeneous with respect to 

v1 and&* have nonzero solutions under the following condition 
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(A-B)(A-CC)+-- A*(A-z2B)(n--2c) =o 

Equating the resultant of the polynomials (4.41, and the one just ob- 

tained, to zero, we obtain for v1 f 0, p, # 0 a condition which contains 

Kovalevskaia's case or gives 

(A-/3)(A--C) = (A-2B)(A-22C) (A- + UC = 0) (/i.;t) 

If we exclude Kovalevskaia's case from consideration, then the common 

root of these polynomials will be pO(l**) = iA, where i = 2 d/. 

If we assume condition (4.5) to be satisfied, then v1 can be considered 

as an arbitrar constant and pl has the value 

Eliminate v2 from the first and second equations and from the first 

and third equations of the third system of (4.3). Recause of the value 

pO = iA for the two equations obtained, their determinant with respect 

to the variables p2 and T* is equal to zero. Then the independent terms 

of these equations must be proportional to the coefficients of the vari- 

ables. This fact leads to the condition 

'lhe condition obtained, together with (4.5) for I/ f 0, gives no new 

cases except Kovalevskaia's, and forces us to conclu e d that v1 = p1 = 

T 1 = 0. 

This corresponds to the following values for p0 obtained from the 

equation (4.4): 

The condition (4.5) is not satisfied. 

Let us determine successively the coefficients of the series (4.2) for 

the root P,(~*‘) = iA. We have 

(I) the third system of (4.3) 

'i., -t AT, -Ah2 = 0, B,vz + X(i'V - BC)pZ - 2BC7, = 0 

/Iv, -Up, -- A_;?-- Ah .= 0 ('iA) 

and its solution 
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(2) the fourth system of (4.3) 

2v, + As, + 2iQk = 0, Blv, - 2iABlp, - 2lICs = 0 

and its solution 

(3) the fifth 

AH lV4 

and its solution 

5vs - 6iAp3 - AT, + 2iQk = 0 (4.i) 

vQ = - iQk, Qk 
p3 = ---XT, T3 = 0 

system of (4.3) 

!+I, + MT, + 112 = 0 

- 2 iA (LIB + BC + CA) pa 2AB& - - $ Nh2 z 0 (4.8) 

6v, -- 8iAp, -- AT, + L h2 = o 2 

h2 ih2 2h2 
VA=-157 p4=-45A’ T4--15A 

(4) the sixth system of (4.3) 

4Av, + A%, - f iQkh = 0 

A”B,v, - 2iA2 (AB _I- AC + 2BC) ps - 2A2BCr, + f iQNkh = 0 (4.9) 

7Av, -- 10iA2p, - A%, - iQkh == 0 
and its solution 

Yg = 0, 
Qkh 

p5 = - 6A” 9 75 - 
2iQkh 

3x42 

l’he coefficient matrix of the system (4.61, which is linear and homo- 

geneous with respect to v2, pZ, r 2 and h, has the following minors of 

order three, obtained by deleting the s-th column: 

A1 = 4iA2A, A2 = - 2Ah, A3 = 2iAh, A4 = - 6iAh 

where X = N + BC+ 0, since condition (4.5) is not satisfied. 

If these minors are not zero, then, by selecting any one of the 

quantities v2, p2, r2, h as the independent variable, the remaining ones 

can be uniquely determined in terms of that quantity. 

For only some of the unknowns to be considered as arbitrary constants, 

it is necessary for the minors of the third order to be equal to zero. 
For the system (4.6) th is requirement cannot be satisfied, since X f 0. 

‘Ihe matrix of the coefficients of the system (4.‘i’), which is linear 

and homogeneous with respect ot v-,, p?, r3 and k has the following minors 

of the third order 
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A1 =8Qdh, AS = &Qh, AB= 0, Aa = - 8iAh 

The requirement for the vanishing of these minors gives no new condi- 
tions, if we reject the condition Q = MgxO = 0, previously obtained. 

The matrix of the coefficients of the system (4.8), which is linear 

and homogeneous with respect to v4, p4, r,, and h2, has the following 
minors of the third order 

A, = -22id2k, A, 1~: - +Ah, A, = -&Ah, A, = -30iA2h 

In this case the necessary requirements for the vanishing of these 

minors cannot be satisfied. 

The matrix of the coefficients of the system (4.9), which is linear 

and homogeneous with respect to v,_, p5, rS, h, has the following minors 

of order three: 

A,= 0, AZ = 2iQAs/ih, A, = - 8QAskA, A, = - 12iA9 

the 

If $ f 0 and A, f 0, then h can be expressed in terms of k and one of 
unknown coefficients p5 or r5. Thus, a restriction connecting the 

arbitrary constants h and k cannot be established. 

The constants h and k, in general, are independent. 

It is therefore necessary that $ = $ = 0, which gives a necessary 

restriction 

k=O (4.10) 

for the value of the constant in the area integral. 

The system (4.9) can be considered as linear and homogeneous with 

respect to the unknowns v5' p5, r5 and k, the matrix of which, provided 

that we replace k by h, has the same minors as before, Iben we obtain the 

necessary restriction 

h=O (4.11) 

for the value of the energy constant. 

Thus the coefficients of the series (4.2) contain no essential arbitary 

constant. 

In general, a similar investigation can be carried out for the s-th 

system of (4.3), not only for the root pO(l,') = iA, but also for the 

root 

This investigation, however, gave no results that need be mentioned 
here. 
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5. Cases of integrability when the center of gravity is 
located in the plane through the axes of equal moments of 
inertia. Consider the third condition, and one of the following three 

conditions, of (3.81, for example the third and the sixth conditions, 

which give 

A= B, A+=j=> y* = 3* = 0 (5.1) 

The center of gravity of the body lies in the plane passing through 

the axes of equal moments of inertia. 

'Ihe basic differential equations (2.10) assume the form 

=; -- y (7 - h)2 + 4Q [Q (‘J - p”) + kp (T - h) - Qk2] (5.2) 

A2C (g)’ = - A$ + (A - c) yp2 + A (A + C;) ‘J? --. d (A - c) p% - A”C,r2 

(p” - As) $ + A [p (T - - h) -- ZQk] g + A (Y ---~ ?‘) 2 = 0 

where Q = Mgxa. 

'Ihe condition (4.5) of the preceding paragraph gives Kovalevskaia's 

case. 

If this condition is not satisfied, i.e. in the case A = ZC, on the 

basis of the results of the preceding paragraph we obtain that either 

k = 0, or h = 0. Therefore, in seeking further conditions of integrabil- 

ity, it is necessary either to observe one of these requirements, or to 

seek other conditions in a general form and then impose these conditions, 

provided that A f 2C. 

Under the conditions (5.11, there exist for the coefficients n , n2 

and n3 in the series (4.2) other values than those considered in Ae ction 

4, for example n, = n3 = 2, n2 = 3, for which the series (4.2) will 

satisfy the system of differential equations (5.2). 

'lhe fact that for A = B the function p (in the case under consideration 

p = Apf can h ave a pole of order three was first observed by Appel'rot 

and Nekrasov (see Appel'rot's theorem in Section 1). 

Substituting the series (4.2) for the above choice of values for nl, 

n2 and n into system (5.21, and equating*the coefficients of equal 

powers o?'t on the left- and right-hand sides of the equations, we obtain 

the following system of algebraic equations for determining the coeffi- 

cients of the series: 
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1. 4v02 + v0c02 + 4Q2p02 = 0 

(A - C) (VII - AT,,) - 9A2C = 0 (5.3) 

2v, + AT, == 0 

3 4. ‘/I (4v, + To?) + 8QZ plpo + 2clvo~o - 4Qkporo = 0 

(A - C) vlpo + 6A2Cp1 - A (A - C) ‘Ipo =_ 0 

v,p, + p1(4v, + ATE) + 2A:,po = 0 

3. ~270~ + 8Q2p2po + 2 (~2 - h) vo~o + vl(vl+ 27170) + 

+ 4Qp, (Qpl - kr,) + :12./o - 4Qk~,p, = 0 

(A - C) v2p02 + 12A”Cp,p, ---- d (A - C) *;*?,,2 + 2 (_‘4 - C) V,?,P” + 

+ 5A2Cy,,? - 24 (A - C) plqpo : 0 

4p2vopo + 3A (TV - h) po2 + 2.~~p,p~ + 2p12vo + ~A?,T~?, = o 

* . . . . . . . . . . . . . . . . . . . . _ . . 

s+ 1. YY I- 4 (s - 2) vo + Q2] + 8Q2P,Po + 2’c,voro = r:-, (v, p, T) 

(A - C) vspo + 6sA*Cp, - A (A - C) ‘cspo = /;l_, (Y, ?, T) 

(s - 2) ~$0 + ps I-- 4% + (s - 2) AT,] - (s + 1) As,po == /;_:-, (v, p, T) 
(s = 1, 2, 3, . . .) 

Here the functions f’S_-l(~, p, r 1, f”S_l(~, p, r ), f’“S_l(~, p, T) are 

polynomials which depend on the unknowns vl, . . . . V 

‘1’ **., rs__l, the indices of which satisfy the con 
$+ $9. l **f Pf-lt 

itron r < s - . 

The first system of (5.3) has the solution 
(5:4) 

3A2C 3A2C 
vo = A-_C , po = v (A _ (?) nz, To = --g, i,=iJxfO) 

“. 

‘lke second system has the determinant .A f 0 and the following solution 

3ACk 3ACk 
v1 = ‘(A-CC),n ’ El = - 2Q (A _ C) 9 ‘cl = 0 

‘Ihe solution of the third system of (5.3) is given by 

“? = 
3C (4/l- 7C) t? 3C (4.4 - 7C) ka 

4 (A + 2C) (‘4 +,3q ’ !+ ~ 8~(A--C)(A+3C)m 

-c2=hf 
C (3A - IOC) k’ 

219 (A + 2C) (;I + 3cj 
etc. 

and so on. 

Without carrying out the examination of the matrix of the system (5.3) 
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(as this has been done in the preceding sections), let us call attention 

to the following. 

For the solutions of the system of differential equations (5.2) re- 

presented in the form of series of the considered form to depend on 

arbitrary constants (though the number of arbitrary constants may not be 

complete), in addition to the constant to simply added to t, it is 

necessary, for values of wO, pO, r o as given by (5.4), for the determinant 

of the (s + 1)st system of (5.3) to vanish for certain positive integral 

values of s(s = 1, 2, 3, . . . ). Equating to zero the determinant of the 

(s + 1)st system of (5.3) with respect to the quantities us, p s and r s, 

we obtain the necessary condition in the form 

[s (s - 1) -- 31 A = [s (s - 1) + 61 C (s = 3, 4, 5, . . .) (5.5) 

This necessary condition for the existence of single-valued solutions 

cannot be satisfied for s = 1 and s = 2 by virtue of the mechanical con- 

ditions of the problem (A > 0, C > 0). 

For s = 3 we obtain the condition A = 4C. Imposing the requirement 

k = 0 obtained in the preceding paragraph, and taking into account (5.11, 

we obtain the Goriachev and Chaplygin case. 

For s = 4 we obtain the condition A = 2 C, Then, in conformity with 

Section 4, the requirement k = 0 is no longer necessary. Taking into 

account (5. l), we again obtain Kovalevskaia’s case. 

For s = 5 we obtain A = 26/27 C, for s = 6 the condition A = 4/3 C, 

and so on. 
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